
1. Positive eigenvectors for positive matrices

Let V be a finite or countably infinite set.

A : V × V → [0,∞) A(v, w) = Avw.

Basic question: For which β ∈ R is there a non-zero vector ψv, v ∈ V , such that
ψv ≥ 0 and

∑

w∈W

Avwψw = eβψv ∀v ∈ V ?

2. Irreducibility

Define An, n ∈ N, recursively such that

A0
vw =

{

0, v 6= w

1, v = w

and
An

vw =
∑

u∈V

AvuA
n−1
uw , n ≥ 1.

Note An may have ∞ among its entries.

We assume in the following thaty A is irreducible, meaning that

∀v, w ∈ V ∃n ∈ N : An
vw > 0

3. Graphs

A defines in a canonical way an oriented graph with V as the set of vertexes.

v
Avw→ w

A is irreducible when this graph is strongly connected: For any pair of vertexes
v, w there is a path from v to w.

4. Necessary conditions

Assume that there is a positive eβ-eigenvector for A. Then

An
vw <∞ ∀n, v, w,

and

log

(

lim sup
n

(An
vv)

1

n

)

≤ β (4.1) e2

Proof. Since
∑

w∈V

An
vwψw = enβψv, (4.2) e1

we see that ψv > 0 for all v ∈ V . It follows then from (
e1
4.2) that An

vw < ∞ for all
n, v, w.
Note that

An
vvψv ≤

∑

w∈V

An
vwψw = enβψv,

which implies that

(An
vv)

1

n ψ
1

n
v ≤ eβψ

1

n
v .

This implies (
e2
4.1).

1
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We assume in the following that An
vw <∞ for all n, v, w and that

log

(

lim sup
n

(An
vv)

1

n

)

<∞.

5. When V is finite

From (
e1
4.2) we see that

∑

w∈V

∞
∑

n=0

An
vwe

−nβψw =
∞
∑

n=0

ψv = ∞.

If V is finite we conclude that
∞
∑

n=0

An
vwe

−nβ = ∞

for some w ∈ V . Choose k ∈ N such that Ak
wv > 0. Then

∞ = Ak
wv

∞
∑

n=0

An
vwe

−nβ

=
∞
∑

n=0

An
vwA

k
wve

−nβ ≤
∞
∑

n=0

An+k
vv e−nβ

= ekβ
∞
∑

n=0

An+k
vv e−(n+k)β ≤ ekβ

∞
∑

n=0

An
vve

−nβ.

Hence
∑∞

n=0A
n
vve

−nβ = ∞ which implies that

e−β ≥
1

lim supn (A
n
vv)

1

n

,

or

β ≤ log

(

lim sup
n

(An
vv)

1

n

)

.

So when V is finite the basic question only has a positive answer when

β = log

(

lim sup
n

(An
vv)

1

n

)

.

�

6. Existence of the solution when
∑∞

n=0A
n
vve

−nβ = ∞.

Set β0 = log
(

lim supn (A
n
vv)

1

n

)

.

Introduce the numbers rvw(n) such that rvw(0) = 0, rvw(1) = Avw and

rvw(n+ 1) =
∑

u 6=w

Avuruw(n)

when n ≥ 1. Then
∞
∑

n=0

An
vwe

−nβ = Ivw +

(

∞
∑

n=1

rvw(n)e
−nβ

)(

∞
∑

n=0

An
wwe

−nβ

)

. (6.1) e3
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for all v, w ∈ V when β > β0. This follows from the product rule for power series
by use of the observation that for n ≥ 1,

An
vw =

n
∑

s=1

rvw(s)A
n−s
ww .

It follows that
(

∞
∑

n=1

rvv(n)e
−nβ

)

< 1

when β > β0, and since
∞
∑

n=0

An
vve

−nβ =
1

1−
∑∞

n=1 rvv(n)e
−nβ

,

that
∞
∑

n=1

rvv(n)e
−nβ0 = 1 (6.2) e5

when
∑∞

n=0A
n
vv(n)e

−nβ0 = ∞.
Now note that

∑

u∈V

Avu

(

N
∑

n=1

ruw(n)e
−nβ0

)

=

N
∑

n=1

∑

u 6=w

Avuruw(n)e
−nβ0 + Avw

N
∑

n=1

rww(n)e
−nβ0

=

N
∑

n=1

rvw(n+ 1)e−nβ0 + Avw

N
∑

n=1

rww(n)e
−nβ0

= eβ0

N
∑

n=1

rvw(n + 1)e−(n+1)β0 + Avw

N
∑

n=1

rww(n)e
−nβ0

= eβ0

N+1
∑

n=1

rvw(n)e
−nβ0 + Avw

(

N
∑

n=1

rww(n)e
−nβ0 − 1

)

.

(6.3) i10

Let N → ∞ and use (
e5
6.2) to find that

ψv =
∞
∑

n=1

rvw(n)e
−nβ0

is a positive eβ0-eigenvector for A.

7. Uniqueness of the positive eigenvector when
∑∞

n=0A
n
vve

−nβ = ∞.

Let ξ = (ξv)v∈V ∈ [0,∞)V be a solution to (
e1
4.2) such that

ξv0 = 1.

We prove by induction that

N
∑

n=1

rvv0(n)e
−nβ ≤ ξv (7.1) b12
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for all N and all v. To start the induction note that ξv = e−β
∑

w∈V Avwξw ≥
e−βAvv0ξv0 = rvv0(1)e

−β. Assume then that (
b12
7.1) holds for all v. It follows that

ξv = e−β
∑

w∈V

Avwξw = e−β

(

∑

w 6=v0

Avwξw + Avv0

)

≥ e−β

N
∑

n=1

∑

w 6=v0

Avwrwv0(n)e
−nβ + e−βAvv0

=
N
∑

n=1

rvv0(n+ 1)e−(n+1)β + e−βrvv0(1) =
N+1
∑

n=1

rvv0(n)e
−nβ

Hence (
b12
7.1) follows by induction and we conclude that

ξv ≥
∞
∑

n=1

rvv0(n)e
−nβ := ψv (7.2) e7

for all v. However,

enβ0 = enβ0ψv0 = enβ0ξv0 =
∑

w∈V

An
v0w
ψw =

∑

w∈V

An
v0w
ξw (7.3) e8

for all n ∈ N. If ψv 6= ξv for just a single v ∈ V , we could use the irreducibility of A
to choose n ∈ N such that

An
v0v
ψv > An

v0v
ξv.

Thanks to (
e7
7.2) this would contradict (

e8
7.3). It follows that

∞
∑

n=1

rvv0(n)e
−nβ, v ∈ V,

is the only positive eβ0-eigenvector for A, up to multiplication by scalars.

8. Eigenvectors when β > β0

When β > β0 the sums
∑∞

n=0A
n
vwe

−nβ are finite. Sometimes this also true when
β = β0. We consider now the case where this is finite for all v, w. Fix a vertex
v0 ∈ V , and consider any other v ∈ V . There is then an m ∈ N such that Am

v0v
> 0.

It follows that

Am
v0v

∞
∑

n=0

An
vwe

−nβ ≤

∞
∑

n=0

Am+n
v0w

e−nβ

= emβ

∞
∑

n=0

An+m
v0w

e(−m−n)β ≤ emβ

∞
∑

n=0

An
v0w
e−nβ

(8.1) i7

and hence
∑∞

n=0A
n
vwe

−nβ

∑∞

n=0A
n
v0w
e−nβ

≤
emβ

Am
v0v

(8.2) i8

Let {wk} be a sequence of vertexes such that

∀v ∈ V ∃N ∈ N : wk 6= v ∀k ≥ N.
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Since
∑∞

n=0A
n
vwk

e−nβ

∑∞
n=0A

n
v0wk

e−nβ
≤

emβ

Am
v0v

for every v ∈ V , and V is countable there is a (diagonal) subsequence {wki} such
that

ψv = lim
i→∞

∑∞

n=0A
n
vwki

e−nβ

∑∞

n=0A
n
v0wki

e−nβ

exists for all v ∈ V . Note that

∑

u∈V

Avu

N
∑

n=0

An
uwki

e−nβ = eβ
N+1
∑

n=0

An
vwki

e−nβ − eβIvwki
, (8.3) i2

for all N , leading to the identity

∑

u∈V

Avu

∑∞
n=0A

n
uwki

e−nβ

∑∞

n=0A
n
v0wki

e−nβ
= eβ

∑∞
n=0A

n
vwki

e−nβ

∑∞

n=0A
n
v0wki

e−nβ
−

eβIvwki
∑∞

n=0A
n
v0wki

e−nβ
.

If we boldly interchange summation and limit we get

lim
i→∞

∑

v∈V

Avu

∑∞
n=0A

n
uwki

e−nβ

∑∞
n=0A

n
v0wki

e−nβ
=
∑

u∈V

Avuψu. (8.4) boldly

Note that

lim
i→∞

eβIvwki
∑∞

n=0A
n
v0wki

e−nβ
= 0

since limi→∞wki = ∞, and we can then conclude from (
i2
8.3) that

∑

u∈V

Avuψu = eβψv

for all v ∈ V . Since ψv0 = 1 we have obtained a solution to (
e1
4.2). The questionable

step (
boldly
8.4) is legitimate when A is row-finite, in the sense that

# {w ∈ V : Avw 6= 0} <∞ ∀v ∈ V.

Thus we have obtained a proof of a 1964 result of W.E. Pruitt: When A row-finite
there is a positive eβ-eigenvector for all β ≥ β0.

example1 Example 8.1. Consider the following graph with labeled vertexes:
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1

a1

a2

a3

a
−1

a
−2

a
−3

c1

c2

c3
c
−1

c
−2

c
−3

b1

b2

b3

b
−1

b
−2

b
−3

For this graph it is quite easy to see that a map ξ : V → [0,∞) which is normalized
such that ξ1 = 1, is a positive eβ-eigenvector for the adjacency matrix A of the graph
when

i) ξa1 + ξb1 + ξc1 = eβ,
ii) ξa

−n
= ξb

−n
= ξc

−n
= e−βn, n = 1, 2, 3, . . . , and

iii) ξan+1
+ e−nβ = eβξan, ξbn+1

+ e−nβ = eβξbn, ξcn+1
+ e−nβ = eβξcn, n ≥ 1

It follows that

ξan+1
= enβ

(

ξa1 −

n
∑

j=1

(

e−2β
)j

)

, n ≥ 1,

combined with similar formulas involving the bn’s and cn’s. The positivity require-
ment on ξ implies that β > 0 and that

min{ξa1 , ξb1, ξc1} ≥
∞
∑

j=1

(e−2β)j =
e−2β

1− e−2β
.

Combined with condition i) it follows that 3 e−2β

1−e−2β ≤ eβ , which means that β ≥

logα ∼ 0, 5138, where α is the real root of the polynomial x3 − x− 3. For β = logα
there is a unique solution, and hence there is a unique positive eβ-eigenvector for
A, up to scalar multiplication. For all values of β > logα the set of β-KMS weights
form a cone with a triangle as base. The extreme rays of the cone correspond to the
three cases where

{ξa1, ξb1 , ξc1} =

{

e−2β

1− e−2β
, eβ −

2e−2β

1− e−2β

}

.
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When A is not row-finite, there is a problem with (
boldly
8.4), and I aim to demonstrate

by example that it is not only a technicality.

8.1. Example. Consider the following graph:

v

It is determined by a function a : N → N defined such that a(n) is the number of
loops of length n. For example we consider

a(n2) = 2n
2−n, n = 1, 2, 3, · · ·

and a(k) = 0 when k is not a square. Let V be the vertexes in the grpah and
A = (Avw)v,w∈V the adjacency matrix of the graph, i.e.

Avw = number of edges from v to w.

If ψ ∈ [0,∞)V is an eβ-eigenvector with ψu = 1, we must have that

eβ = 1 +
∞
∑

n=2

e−(n2−1)β2n
2−n,

or

1 = e−β +
∞
∑

n=2

e−n2β2n
2−n. (8.5) u20

For the sum to be convergent we must have that

lim sup
n

−n2β + (n2 − n) log 2 < 0,

which means that β ≥ log 2. Note that equality holds in (
u20
8.5) when β = log 2. Since

the righthand side is strictly decreasing in β, it follows that β = log 2 is the only
value for which there can be an eβ-eigenvector - and there is actually one, and it is
unique (This is an exercise!).

Note that lim supn→∞ (An
vv)

1

n = 2. Indeed,

lim sup
n→∞

(An
vv)

1

n ≥ lim sup
n→∞

(

2n
2−n
)

1

n2

= 2. (8.6) e10

On the other the presence of a positive 2-eigenvector implies that 2 ≥ lim supn→∞ (An
vv)

1

n ,
cf. (

e2
4.1). Hence A behaves as a finite matrix with respect to positive eigenvectors.

Now remove the edge from u to itself to get the graph G′, and consider its adja-
cency matrix B. There are then no positive eigenvectors at all. Indeed, without the
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loop of length 1 at u, the equation
u20
8.5 becomes

1 =
∞
∑

n=2

e−n2β2n
2−n. (8.7) u22

Since the sum can only be convergent when β ≥ log 2 and
∞
∑

n=2

e−n2β2n
2−n ≤

∞
∑

n=2

e−n2 log 22n
2−n =

∞
∑

n=2

2−n =
1

2
< 1,

when β ≥ log 2, we conclude that there are no positive eigenvectors at all.

Exercise 8.2. Show that lim supn→∞ (Bn
vv)

1

n = 2.
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