1. POSITIVE EIGENVECTORS FOR POSITIVE MATRICES

Let V' be a finite or countably infinite set.
AV xV =1[0,00) A(v,w)= Ay,

Basic question: For which g € R is there a non-zero vector v, v € V, such that

1, > 0 and
> Apthy =€, eV 2

weW
2. IRREDUCIBILITY
Define A™, n € N, recursively such that
A0 {O, vF#w
v 1, v=w

and

= AnAp' n>1

ueV
Note A™ may have oo among its entries.
We assume in the following thaty A is irreducible, meaning that

Vo,weV IneN: A} >0
3. GRAPHS
A defines in a canonical way an oriented graph with V' as the set of vertexes.
v Aoy

A is irreducible when this graph is strongly connected: For any pair of vertexes
v, w there is a path from v to w.

4. NECESSARY CONDITIONS
Assume that there is a positive e’-eigenvector for A. Then
Ay, < 0o Vn,v,w,

and

3=

bg(mHam(A&))fSB (1) [=2]

Proof. Since
> AL, = "y, (4.2) [et

weV
we see that ¢, > 0 for all v € V. It follows then from (5_12) that A7, < oo for all
n, v, w.
Note that
Ay <Y ALy = €y,
weV
which implies that 1 )
- (AR 8 < ey
This implies (121_1)



We assume in the following that A}, < oo for all n,v, w and that

) <o

5. WHEN V IS FINITE

3=

log (lim sup (A},)

1
From (E‘Z) we see that

Z Z Agweinﬁww = Z Yy, = 00
n=0

weV n=0
If V is finite we conclude that

ZA -8 _ 5o

for some w € V. Choose k € N such that A¥ > 0. Then
oo
o= AL, A
n=0
(e o]
T W
n=0
o0
— kP ZAZ:kef(nJrk)B < P ZALLUe*nB

Hence Y7 ; A" e7"? = oo which implies that
1

e’ >

Y

B <log <lim sup (Aj},) )

So when V is finite the basic question only has a positive answer when

B =log (lim sup (A7) )

6. EXISTENCE OF THE SOLUTION WHEN » > An em"F = 0.

lim sup,, (A7) 5
or

3=

3=

(%

Introduce the numbers r,,(n) such that r,,(0) = 0, rvw(l) = A,, and

row(n+1) = Apruw(n
uFw

Set 5y = log (lim sup,, (A" )%)

when n > 1. Then

St (o) (£ )
n=0

n=1

(6.1)



for all v,w € V when 8 > ). This follows from the product rule for power series
by use of the observation that for n > 1,

n

AL, = Z Tow(8) A -

s=1
It follows that
(Z Tow(n)e "6> <1
n=1
when [ > fy, and since
= 1
Agveinﬁ = o0 Y

that
D rw(n)e ™ =1 (6.2)

when Y07 A" (n)e 0 = 0.
Now note that

3 Aw <Z Puw (10 )

ueV
N
Z Aw'ruw(n)e’”ﬁO + Ay Z 'r’ww(n)e’”ﬁO
1 u#w

n=1

Mz M=

- U)(n + 1)€—n60 + Apw Z Tww (n>€_n60 (63) i10
n=1 n=1
N N

— ePo erw(n +1)e” (n+1)fo 4 A, Z —Nﬁo

n=1 n=1

N+1 N
= 650 Z Tuw(n)e_nﬁo + Avw (Z Tww(n)e_nﬁo - 1) :

n=1 n=1

5
Let N — oo and use (%‘2) to find that
’QZ)U = Z Tow (n)e_nﬁo
n=1

is a positive e-eigenvector for A.

7. UNIQUENESS OF THE POSITIVE EIGENVECTOR WHEN Y o0 A" ¢ = oo,
el
Let € = (&)vev € [0,00)" be a solution to (iZFZ) such that

Evo = 1.
We prove by induction that

N
ervo —nﬁ S gv (7].) bl12

n=1



for all N and all v. To start the inductio gote that &, = e Y wey Avwlnw =

e P Ayue€uy = Towo(1)e™”. Assume then that ( holds for all v. It follows that
gv = 676 Z Avwéw = 676 (Z Avwgw + Avv())
weV wH#vg
= 6_6 Z Z AW’TW’O 0 +e Avvo
n=1 w#vg

N+1

Fano(n 4+ 1)e 8 £ e Pr (1) = 3 ry (n)e ™
1 n=1

Mz

n

Hence ( 2) follows by induction and we conclude that

§o 2 imo (n)e ™ =1, (7.2)
n=1

for all v. However,

enﬁo — enﬁowvo _ enﬁogvo Z Amw Z Avow (7.3)

weV weV

for all n € N. If ¢, # &, for just a single v € V', we could use the irreducibility of A
to choose n € N such that

7 vovwv 8> A’ZLO'USU'
Thanks to (}%_2) this would contradict (}'?—3) It follows that

[e.9]
ero(n)e_"ﬁ, velV,
n=1

is the only positive e0-eigenvector for A, up to multiplication by scalars.

8. EIGENVECTORS WHEN f3 > 3,

When S > fy the sums )" An e~ are finite. Sometimes this also true when
B = Po. We consider now the case where this is finite for all v,w. Fix a Vertex
vo € V, and consider any other v € V. There is then an m € N such that A7, >
It follows that

vOUZA 7n5 < ZAZ(L);n —nf

=S A S e
=0

(8.1)

and hence

ZOO 0 n —nﬁ emB ( )
= < 8.2
ZZO:O vowe —nb A%v
Let {wy} be a sequence of vertexes such that

VoeV AN e N: w, #v Vk > N.



Since
EZO OAgw einﬁ emB
k < —
Zn 0 U()’wk Avov
for every v € V, and V is countable there is a (diagonal) subsequence {wy,} such
that

En =0 ka nB
1, = lim

i—00 e—"np
n= 0 Uow;C

exists for all v € V. Note that

N+1
> Aw Z Apy e = Z A€ = P Loy, (8.3)
ueV
for all NV, leading to the identity
Z A AZwkz einﬁ Zn 0 vwk P € vak
VU _ — — :
ueV Zn 0 Uowk € nﬁ Zn 0 vowk e Zn 0 Uowk e’

If we boldly interchange summation and limit we get

n

Auw
i 3 A S 84
b0 n=0 Uow,rC

veV ueV

Note that

eﬁ_fvwk
lim T B = 0
i—00 Zn =0 vowk €

since lim;_,o, wg, = 00, and we can then conclude from (%‘3) that

Z Avud}u = eﬁ’g/)

ueV

for all y,g.V. Since 1, =1 we have obtained a solution to (E_Z) The questionable
step (B.4) 18 legitimate when A is row-finite, in the sense that

H{lweV: Ay #0} <o Vv eV,

Thus we have obtained a proof of a 1964 result of W.E. Pruitt: When A row-finite
there is a positive e’-eigenvector for all 5 > f,.

Example 8.1. Consider the following graph with labeled vertexes:



For this graph it is quite easy to see that a map £ : V' — [0, 00) which is normalized
such that & = 1, is a positive e’-eigenvector for the adjacency matrix A of the graph
when

1) f};l + gbl + 661 = eﬁa
i) &, =&, =&, =e P n=1,23,..., and
i) &0y +e ™ =€, & e =€, o, teP =68, n>1

It follows that
Carsr = o8 <§a1 . Z (625)3') >,

j=1
combined with similar formulas involving the b,’s and ¢,’s. The positivity require-
ment on ¢ implies that 5 > 0 and that

28

min{Eo,, &y, i} > ;@—”V 1w

e 28

Combined with condition i) it follows that 3= < e, which means that f >

log o ~ 0, 5138, where « is the real root of the polynomial 23 — x — 3. For 3 = log «
there is a unique solution, and hence there is a unique positive e’-eigenvector for
A, up to scalar multiplication. For all values of 8 > log « the set of -KMS weights
form a cone with a triangle as base. The extreme rays of the cone correspond to the
three cases where

e 28

3 2e~ %
{Sa1s Ebrs e} = {1_76_257 e — m} :



. . . . boldl .
When A is not row-finite, there is a problem with (iSZ% ), and I aim to demonstrate
by example that it is not only a technicality.

8.1. Example. Consider the following graph:

It is determined by a function a : N — N defined such that a(n) is the number of
loops of length n. For example we consider

a(n?) =2"" n=1,23,--

and a(k) = 0 when k is not a square. Let V be the vertexes in the grpah and
A = (Apw)vwev the adjacency matrix of the graph, i.e.

Ay = number of edges from v to w.

If 1 € [0,00)V is an e’-eigenvector with ¢, = 1, we must have that

B_1+Z n—162n—n

or

oo
L=e P4 ) e, (8.5) [u20
n=2
For the sum to be convergent we must have that

limsup —n?B + (n* — n)log2 < 0,

which means that 5 > log 2. Note that equality holds in (E%)Q) when § = log 2. Since
the righthand side is strictly decreasing in [, it follows that 8 = log2 is the only
value for which there can be an e®-eigenvector - and there is actually one, and it is
unique (This is an exercise!).

Note that limsup,, (Afjv)% = 2. Indeed,

lim sup (Aj, ) > lim sup <2” ”)72 = 2. (8.6) |el0

n—o0 n—oo

B\H

On ‘jhia other the presence of a positive 2-eigenvector implies that 2 > limsup,,_, . (A%))",
e
cf. (B1). Hence A behaves as a finite matrix with respect to positive eigenvectors.

Now remove the edge from u to itself to get the graph G’, and consider its adja-
cency matrix B. There are then no positive eigenvectors at all. Indeed, without the



on b
loop of length 1 at u, the equation 8.5 becomes
1= e, (8.7)
n=2

Since the sum can only be convergent when 3 > log 2 and

(3] 0 b
SR S P )
n=2 n=2 n=2

when [ > log 2, we conclude that there are no positive eigenvectors at all.
1
Exercise 8.2. Show that limsup,,_,.. (B},)" = 2.
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