Game of Life & Garden of Eden

Benjamin Randeris Johannesen

Eulers Venner Institut for Matematik Aarhus Universitet

11. september 2014

《口》 《聞》 《臣》 《臣》

э

Game of Life by John Horton Conway

The rules of the game:

birth a dead cell with three live neighbours becomes alive survival a live cell with two or three live neighbours stays alive loneliness a live cell with less than two live neighbours dies overcrowding a live cell with more than three live neighbours dies

イロト イポト イヨト イヨト

Definition of Cellular Automata (for $G = \mathbb{Z}^d$ and $|A| < \infty$)

A map $\tau : A^G \to A^G$ is a **cellular automaton** if there is a set $S \subseteq G$ and a map $\mu : A^S \to A$ such that for all $x \in A^G$ and $g \in G$,

$$\tau(x)(g) = \mu((g^{-1}x)|_S)$$

where $(hx)(k) = x(h^{-1}k)$ for all $h, k \in G$

The Curtis-Hedlund-Lyndon Theorem (for $G = \mathbb{Z}^d$ and $|A| < \infty$)

A map $\tau : A^G \to A^G$ is a cellular automaton if and only if it is *G*-equivariant and continuous (w.r.t. the prodiscrete topology)

Definition of Cellular Automata (for $G = \mathbb{Z}^d$ and $|A| < \infty$)

A map $\tau : A^G \to A^G$ is a **cellular automaton** if there is a set $S \subseteq G$ and a map $\mu : A^S \to A$ such that for all $x \in A^G$ and $g \in G$,

$$\tau(x)(g) = \mu((g^{-1}x)|_S)$$

where $(hx)(k) = x(h^{-1}k)$ for all $h, k \in G$

The Curtis–Hedlund–Lyndon Theorem (for $G = \mathbb{Z}^d$ and $|A| < \infty$)

A map $\tau : A^G \to A^G$ is a cellular automaton if and only if it is *G*-equivariant and continuous (w.r.t. the prodiscrete topology)

Example – Game of Life

Put $G = \mathbb{Z}^2$, $A = \{0,1\}$ and $S = \{-1,0,1\} \times \{-1,0,1\} \subseteq G$ Define $\mu : A^S \to A$ by (for any $y \in A^S$)

$$\mu(y) = \begin{cases} 1 & \text{if } \sum_{s \in S} y(s) = 3\\ 1 & \text{if } \sum_{s \in S} y(s) = 4 \text{ and } y((0,0)) = 1\\ 0 & \text{otherwise} \end{cases}$$

Define $\tau: A^G \to A^G$ as before by (for any $x \in A^G$ and $g \in G$) $\tau(x)(g) = \mu((g^{-1}x)|_S)$

Then au is the cellular automaton associated with the Game of Life

Example – Game of Life

Put $G = \mathbb{Z}^2$, $A = \{0, 1\}$ and $S = \{-1, 0, 1\} \times \{-1, 0, 1\} \subseteq G$ Define $\mu : A^S \to A$ by (for any $y \in A^S$)

$$\mu(y) = \begin{cases} 1 & \text{if } \sum_{s \in S} y(s) = 3\\ 1 & \text{if } \sum_{s \in S} y(s) = 4 \text{ and } y((0,0)) = 1\\ 0 & \text{otherwise} \end{cases}$$

Define $\tau : A^G \to A^G$ as before by (for any $x \in A^G$ and $g \in G$) $\tau(x)(g) = \mu((g^{-1}x)|_S)$

Then au is the cellular automaton associated with the Game of Life

Example – Game of Life

Put $G = \mathbb{Z}^2$, $A = \{0, 1\}$ and $S = \{-1, 0, 1\} \times \{-1, 0, 1\} \subseteq G$ Define $\mu : A^S \to A$ by (for any $y \in A^S$)

$$\mu(y) = \begin{cases} 1 & \text{if } \sum_{s \in S} y(s) = 3\\ 1 & \text{if } \sum_{s \in S} y(s) = 4 \text{ and } y((0,0)) = 1\\ 0 & \text{otherwise} \end{cases}$$

Define $au: A^G o A^G$ as before by (for any $x \in A^G$ and $g \in G$) $au(x)(g) = \mu((g^{-1}x)|_S)$

Then au is the cellular automaton associated with the Game of Life

A cellular automaton is

- injective if distinct configurations have distinct successors
- surjective if every configuration has a predecessor

Proposition (for $G = \mathbb{Z}^d$ and $|A| < \infty$)

A cellular automaton $\tau: A^G \rightarrow A^G$ is reversible iff it is bijective

A cellular automaton is **pre-injective** if distinct configurations, agreeing in all but a finite number of cells, have distinct successors

A cellular automaton is

- injective if distinct configurations have distinct successors
- surjective if every configuration has a predecessor

Proposition (for $G = \mathbb{Z}^d$ and $|A| < \infty$)

A cellular automaton $\tau: A^{\mathcal{G}} \to A^{\mathcal{G}}$ is reversible iff it is bijective

A cellular automaton is **pre-injective** if distinct configurations, agreeing in all but a finite number of cells, have distinct successors

A cellular automaton is

- injective if distinct configurations have distinct successors
- surjective if every configuration has a predecessor

Proposition (for $G = \mathbb{Z}^d$ and $|A| < \infty$)

A cellular automaton $\tau: A^{\mathcal{G}} \rightarrow A^{\mathcal{G}}$ is reversible iff it is bijective

A cellular automaton is **pre-injective** if distinct configurations, agreeing in all but a finite number of cells, have distinct successors

Recall that a map $f: X \to Y$ is

- injective iff there is a map $g: Y \to X$ such that $g \circ f = id_X$
- surjective iff there is a map $g: Y \to X$ such that $f \circ g = id_Y$

Definition of Surjunctive Concrete Categories

A concrete category C is **surjunctive** if any injective endomorphism $f : X \to X$ with $X \in Ob(C)$ and $f \in Mor(X, X)$ is surjective

An endomorphism is a self-map.

Recall that a map $f: X \to Y$ is

- injective iff there is a map $g: Y \to X$ such that $g \circ f = id_X$
- surjective iff there is a map $g: Y \to X$ such that $f \circ g = id_Y$

Definition of Surjunctive Concrete Categories

A concrete category C is **surjunctive** if any injective endomorphism $f : X \to X$ with $X \in Ob(C)$ and $f \in Mor(X, X)$ is surjective

An endomorphism is a self-map.

Example

A set X is finite iff any injective map $f : X \to X$ is surjective

Example

A vector space V is finite-dimensional iff any injective linear operator $L: V \rightarrow V$ is also surjective

Example

A set X is finite iff any injective map $f: X \to X$ is surjective

Example

A vector space V is finite-dimensional iff any injective linear operator $L: V \rightarrow V$ is also surjective

Motivation Examples Permanence

Definition of Garden of Eden Configurations

A configuration is called a Garden of Eden if it has no predecessor

A cellular automaton is surjective iff it has no Garden of Eden

The Garden of Eden Theorem (for $G = \mathbb{Z}^d$ and $|A| < \infty$).

A cellular automaton $\tau: A^G \to A^G$ is pre-injective iff it is surjective

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Definition of Garden of Eden Configurations

A configuration is called a Garden of Eden if it has no predecessor

A cellular automaton is surjective iff it has no Garden of Eden

The Garden of Eden Theorem (for $G = \mathbb{Z}^d$ and $|A| < \infty$).

A cellular automaton $\tau: A^G \to A^G$ is pre-injective iff it is surjective

Definition of Garden of Eden Configurations

A configuration is called a Garden of Eden if it has no predecessor

A cellular automaton is surjective iff it has no Garden of Eden

The Garden of Eden Theorem (for $G = \mathbb{Z}^d$ and $|A| < \infty$)

A cellular automaton $\tau: A^{\mathcal{G}} \to A^{\mathcal{G}}$ is pre-injective iff it is surjective

Example – Game of Life ($G = \mathbb{Z}^2$ and $A = \{0, 1\}$)

Define configurations $x, y \in A^G$ by (for all $g \in G$)

$$x(g) = 0$$
 and $y(g) = \begin{cases} 1 & \text{if } g = (0,0) \\ 0 & \text{if } g \neq (0,0) \end{cases}$

Then $\tau(x) = \tau(y) = x$ so τ is not pre-injective (nor surjective!)

A Garden of Eden in Game of Life

< ロ > < 同 > < 回 > < 回 > < □ > <

Motivation Cellular automata Surjunctive groups Examples Unsolved problems Permanence

Example – Game of Life ($G = \mathbb{Z}^2$ and $A = \{0, 1\}$)

Define configurations $x, y \in A^G$ by (for all $g \in G$)

$$x(g) = 0$$
 and $y(g) = \begin{cases} 1 & \text{if } g = (0,0) \\ 0 & \text{if } g \neq (0,0) \end{cases}$

Then $\tau(x) = \tau(y) = x$ so τ is not pre-injective (nor surjective!)

A Garden of Eden in Game of Life

Motivation Examples Permanence

Definition of Surjunctive Groups

A group G is surjunctive if every injective cellular automaton $\tau: A^G \to A^G$ over G with finite alphabet A is surjective

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ のへで

Example

 \mathbb{Z}^d is surjunctive by The Garden of Eden Theorem

Examples

All finite groups, free groups and abelian groups are surjunctive

More generally all **residually** finite groups, (residually) **amenable** groups and **sofic** groups are surjunctive

- Are all groups sofic?
- Are all groups surjunctive?
- Are all surjunctive groups sofic?

Motivation Surjunctive groups Unsolved problems

Examples Permanence

Example

 \mathbb{Z}^d is surjunctive by The Garden of Eden Theorem

Examples

All finite groups, free groups and abelian groups are surjunctive

- Are all groups sofic?
- Are all groups surjunctive?

Example

 \mathbb{Z}^d is surjunctive by The Garden of Eden Theorem

Examples

All finite groups, free groups and abelian groups are surjunctive

More generally all **residually** finite groups, (residually) **amenable** groups and **sofic** groups are surjunctive

- Are all groups sofic?
- Are all groups surjunctive?
- Are all surjunctive groups sofic?

Example

 \mathbb{Z}^d is surjunctive by The Garden of Eden Theorem

Examples

All finite groups, free groups and abelian groups are surjunctive

More generally all **residually** finite groups, (residually) **amenable** groups and **sofic** groups are surjunctive

- Are all groups sofic?
- Are all groups surjunctive?
- Are all surjunctive groups sofic?

Example

 \mathbb{Z}^d is surjunctive by The Garden of Eden Theorem

Examples

All finite groups, free groups and abelian groups are surjunctive

More generally all **residually** finite groups, (residually) **amenable** groups and **sofic** groups are surjunctive

- Are there any non-sofic groups?
- Are there any non-surjunctive groups?
- Are there any non-sofic surjunctive groups?

Proposition

Any subgroup of a surjunctive group is surjunctive

A group locally $[\cdots]$ if all its finitely generated subgroup are $[\cdots]$

Proposition

A group is surjunctive if and only if it is locally surjunctive

Proposition

Any subgroup of a surjunctive group is surjunctive

A group locally $[\cdots]$ if all its finitely generated subgroup are $[\cdots]$

Proposition

A group is surjunctive if and only if it is locally surjunctive

Proposition

Any subgroup of a surjunctive group is surjunctive

A group locally $[\cdots]$ if all its finitely generated subgroup are $[\cdots]$

Proposition

A group is surjunctive if and only if it is locally surjunctive

Let G be a group and K a field

Kaplansky's Stable Finiteness Conjecture

The group ring K[G] is stably finite

Kaplansky's Zero-Divisors Conjecture

If G is torsion-free K[G] contains no zero-divisors

Kaplansky's Idempotent Conjecture

If G is torsion-free K[G] contains no non-trivial idempotents

Kaplansky's Unit Conjecture

If G is torsion-free K[G] contains no non-trivial units

- Tullio Ceccherini-Silberstein, Michel Coornaert: Cellular Automata and Groups, Springer-Verlag, Berlin, 2010.
- Tullio Ceccherini-Silberstein, Michel Coornaert: Surjunctivity and Reversibility of Cellular Automata over Concrete Categories, *Trends in Harmonic Analysis*, Springer, Milan, 2013.